Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Daniel E. Lynch^a* and Ian McClenaghan^b

^aSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and ^bKey Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England

Correspondence e-mail: apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(C-C) = 0.003 \text{ Å}$ Disorder in main residue R factor = 0.037 wR factor = 0.100 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The asymmetric of title compound, unit the 2C₉H₈N⁺·CuCl₄²⁻·2H₂O, comprises one quinolinium cation, one water molecule and one-half of the $CuCl_4^{2-}$ anion with the other half generated by crystallographic twofold symmetry. The water molecules are linked to the anions through O-H···Cl hydrogen bonds to form two-dimensional molecular networks parallel to (110). The cations are arranged between two networks in parallel stacks. The N-H···O, C- $H \cdots O$ and $C - H \cdots Cl$ intermolecular hydrogen bonds link the cations and the anion networks to form a three-

Bisquinolinium tetrachlorocuprate dihydrate

Received 29 August 2002 Accepted 11 September 2002 Online 20 September 2002

Comment

dimensional network.

Crystals of the title compound, (I), were obtained after several days from the cooled reaction solution following the heating of CuCl₂ and *E*-2-acetylbenzene-8-quinonylhydrazone in dilute HCl. We are currently studying the derivatives of both quinonylhydrazones (Lynch & McClenaghan, 2001*a*) and pyrrolo[3,2-*h*]quinolines (Lynch & McClenaghan, 2001*b*), and it was our intention to prepare the copper(II) complex of *E*-2-acetylbenzene-8-quinonylhydrazone before proceeding with the Cu complex of the corresponding pyrrolo[3,2-*h*]quinoline. However, the acidic conditions used to solublize the hydrazone were also sufficient to hydrolyse this compound back to the quinonylhydrazine, and then the presence of Cu²⁺ and air oxidized the hydrazine to quinoline itself; the latter process was reported by Timmons (1970).

The asymmetric unit of (I) consists of one quinolinium cation, one water molecule and one half of the CuCl_4^{2-} anion (the other half is generated by crystallographic twofold symmetry). The Cu atom in the distorted tetrahedral anion (Table 1) lies on a twofold axis and the two independent Cl atoms are both disordered over two sites with main site occupancies of 80%. The anions and the water molecules form two-dimensional hydrogen-bonding networks parallel to (110), in which one of the water H atoms, H1W, is involved in three-centered hydrogen bonds with Cl1 and Cl2 atoms (Table 2). The cations are arranged between two anion-water networks in parallel stacks with their centroids alternately

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Molecular configuration and atom-numbering scheme for the title compound, showing 50% probability ellipsoids. One of the two H atoms attached to the water O atom is hidden.

separated by 3.685 (3) and 4.057 (3) Å (Fig. 2). The cations are linked to the anion-water networks through N-H···O, C- $H \cdots O$ and $C - H \cdots Cl$ intermolecular hydrogen bonds (Table 2), to form a three-dimensional molecular network. A previously reported structure, similar to (I), is bis[cinchonium tetrachlorocuprate(II)] trihydrate (Dyrek et al., 1987).

Experimental

The title compound was obtained from Key Organics Ltd and crystals were grown from dilute HCl solution.

Crystal data

refinement

$2C_{9}H_{8}N^{+} \cdot Cl_{4}Cu^{2-} \cdot 2H_{2}O$ $M_{r} = 501.70$ Monoclinic, C2/c a = 11.815 (2) Å b = 9.837 (2) Å c = 18.311 (4) Å $\beta = 101.05$ (3)°	$D_x = 1.595 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 5373 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 1.57 \text{ mm}^{-1}$ T = 150 (2) K
$V = 2088.7 (7) A^{3}$ Z = 4	Plate, yellow $0.38 \times 0.36 \times 0.04 \text{ mm}$
Data collection	
Bruker–Nonius KappaCCD area- detector diffractometer φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.586, T_{\max} = 0.940$ 7197 measured reflections	2330 independent reflections 2001 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 27.5^{\circ}$ $h = -14 \rightarrow 15$ $k = -11 \rightarrow 12$ $l = -23 \rightarrow 23$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.100$ S = 1.04 2330 reflections 153 parameters H atoms treated by a mixture of independent and constrained	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0588P)^{2} + 1.3968P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.47 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.62 \text{ e} \text{ Å}^{-3}$

Figure 2

Packing diagram viewed down the a axis. H-bonding interactions and Cu-Cl bonds are shown as dotted lines.

Table 1

Selected	geometric	parameters ((\mathbf{A}))
----------	-----------	--------------	----------------	---

Cl1-Cu1-Cl2	100.45 (6)	$\begin{array}{c} Cl2\!-\!Cu1\!-\!Cl2^i\\ Cl1\!-\!Cu1\!-\!Cl1^i \end{array}$	124.11 (7)
Cl2-Cu1-Cl1 ⁱ	107.12 (5)		118.98 (8)

Symmetry code: (i) -x, y, $\frac{1}{2} - z$.

Table 2

I	yċ	lrogen-	bonding	geometry	(A	.,°))
---	----	---------	---------	----------	----	------	---

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O1W$	0.79 (3)	1.94 (3)	2.727 (3)	179 (3)
$O1W-H1W\cdots Cl1$	0.86 (4)	2.77 (4)	3.474 (3)	140 (3)
$O1W-H2W\cdots Cl1^{i}$	0.80(5)	2.43 (5)	3.234 (3)	175 (4)
$O1W - H1W \cdot \cdot \cdot Cl2$	0.86 (4)	2.60 (4)	3.311 (2)	141 (3)
$C2-H2\cdots O1W^{ii}$	0.95	2.51	3.274 (3)	137
C4-H4···Cl1 ⁱⁱⁱ	0.95	2.79	3.730 (3)	169
$C7-H7\cdot\cdot\cdot Cl2^{iv}$	0.95	2.81	3.578 (3)	138
C8-H8···Cl2	0.95	2.76	3.660 (3)	158

Symmetry codes: (i) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (ii) $1 - x, y, \frac{1}{2} - z$; (iii) $\frac{1}{2} + x, \frac{1}{2} - y, z - \frac{1}{2}$; (iv) -x, -y, -z.

The C-bound H atoms were included in the refinement at calculated positions, as riding models with C-H set to 0.95 Å. All other H atoms involved in the H-bonding network were located from a difference map and both positional and isotropic displacement parameters were refined. The Cu-Cl bond lengths for the two minor Cl atom sites were restrained to be the same as for their corresponding major sites.

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

The Authors thank EPSRC National Crystallography Service (Southampton).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
- Dyrek, K., Goslar, J., Hodorowicz, S. A., Hoffmann, S. K., Oleksyn, B. J. & Weselucha-Birczynska, A. (1987). *Inorg. Chem.* 26, 1481–1487.
 Hooft, R. (1998). *COLLECT*. Nonius BV, Delft, The Netherlands.

Lynch, D. E. & McClenaghan, I. (2001*a*). Acta Cryst. E**57**, 052–053.

- Lynch, D. E. & McClenaghan, I. (2001b). Acta Cryst. E57, 056–057. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. London: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1994). PLUTON94. University of Utrecht, The Netherlands.
- Spek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands.
- Timmons, C. J. (1970). *Modern Reactions in Organic Synthesis*, p. 4. London: Van Norstrand Reinhold Co.